THE STEREOSELECTIVE SYNTHESIS OF C₁₈-JUVENILE HORMONE ANALOGUE

Teruaki MUKAIYAMA, Haruhiko TODA, and Susumu KOBAYASHI Department of Chemistry, Faculty of Science The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

The new method for the stereoselective preparation of 1,5-diene units was successfully applied to the synthesis of ${\rm C}_{18}$ -juvenile hormone analogue 16 of high biological activity.

In the preceding paper we have reported a new route to the stereoselective preparation of 1,5-diene unit and its application to the synthesis of C_{18}^- and C_{17}^- juvenile hormones. 1) The key steps involved in the route are (1) the stereoselective trans addition of benzenethiol to an α,β -acetylenic ester and (2) the stereospecific preparation of trisubstituted olefin. 2)

We now describe a stereoselective synthesis of C_{18}^- juvenile hormone analogue which was reported to have a high biological activity by Mori et al. 3) When diphenylthioacetal $\underline{2}$, prepared from β -ketoester $\underline{1}$ and benzenethiol in 86% yield, was heated to 110°C in the presence of a catalytic amount of $2nCl_2$, elimination of benzenethiol occurred and \underline{E} - β -phenylthio- α , β -ethylenic ester $\underline{3}$ and β -phenylthio- β , γ -ethylenic ester $\underline{4}$ were obtained in 31% and 20% yields, respectively. $\underline{4}$ was found to isomerize to the desired \underline{E} - β -phenylthio- α , β -ethylenic ester $\underline{3}$ on treating with potassium-tert-butoxide in tert-butyl alcohol. $\underline{3}$ was methylated by the coupled use of methylmagnesium bromide and cuprous iodide in tetrahydrofuran at -78°C to afford α , β -ethylenic ester $\underline{5}$ in 70% yield, which was reduced to C_{7} -alcohol 6 in 88% yield.

The homologation of C_7 - alcohol $\underline{6}$ to the C_{13} - alcohol $\underline{12}$ was achieved by the same reaction sequence described previously $(1)^{2}$; (1) propynylation followed by methoxycarbonylation (59% yield), (2) base catalyzed addition of benzenethiol (79% yield), (3) ethylation with ethylmagnesium bromide and cuprous iodide (89% yield) and (4) aluminum hydride reduction (quant.).

The preparation of the trienic ester $\underline{15}^{4)}$, the precursor of juvenile hormone analogue, was accomplished starting from C_{13}^- alcohol $\underline{12}$ by a repetitive application of the above mentioned procedure.

The epoxidation of the trienic ester with m-chloroperbenzoic acid in methylene chloride at 0°C followed by TLC purification afforded the desired C_{18} -juvenile hormone analogue $\underline{16}^{5}$) in 64% yield, and the product exhibited fully consistent of n.m.r. and i.r. spectra with the assigned structure $\underline{16}$.

REFERENCES

- 1) S. Kobayashi and T. Mukaiyama, Chem. Lett., 1425 (1974).
- 2) S. Kobayashi and T. Mukaiyama, Chem. Lett., 705 (1974).
- 3) K. Mori, T. Mitui, J. Fukami, and T. Ohtaki, Agr. Biol. Chem., 35, 1116 (1971).
- 4) $\text{n.m.r.}(\delta_{\text{TMS}} \text{ ppm, CCl}_4): 0.97(\text{m, 6H}), 1.64(\text{s, 3H}), 1.18 \sim 1.51(\text{m, 2H}), 1.75 \sim 2.30(\text{m, 12H}), 2.13(\text{s, 3H}), 3.61(\text{s, 3H}), 5.02(\text{m, 2H}), 5.59(\text{bs, 1H}). i.r.: <math>v_{\text{C=0}}$ 1720, $v_{\text{C=C}}$ 1650 cm⁻¹. Anal. calcd. for $C_{19}H_{32}O_2$: C, 78.03; H, 11.03. Found: C, 78.33; H, 11.23%.
- 5) n.m.r.(δ_{TMS} ppm, CC1₄): 0.96(m, 3H), 0.99(m, 3H), 1.20(s, 3H), 1.25 \sim 1.75(m, 6H), 1.75 \sim 2.30(m, 8H), 2.14(s, 3H), 2.49(t, J=6 Hz, 1H), 3.61(s, 3H), 5.05(m, 1H), 5.59(bs, 1H).
 - i.r.: $v_{C=0}$ 1720, $v_{C=C}$ 1650 cm⁻¹.